
Geometry of Numbers
prepared by Oleg Ivrii

Integral Triangles

An integral triangle (a triangle in the plane whose vertices have integer coordinates) is
called simple if it contains no integral points in the interior or on its sides. The “Geometry
of Numbers” is a theory built around the following fact: every simple triangle has area
1/2. Equivalently, a simple parallelogram has area 1.

1. Prove the statement just made. Hint: consider a large circle and notice that the
number of parallelograms is about equal to the number of integral points.

2. The boundary of an integral triangle does not contain integral points (excluding the
vertices) and there is exactly one integral point in the interior. Show that this point
is the centroid.

3. An integral polygon has i integral points in the interior and b on the boundary. Prove
Pick’s formula: the area of the polygon is A = i+ b

2 − 1.
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4. A king walks on an 8× 8 chessboard: starting from one square, visiting each square
exactly once and returning to the starting square. The path traced out by the king’s
movement is a non-intersecting loop (every move, a king walks in a straight line from
the center of one square to the center of another). Find the area enclosed within the
loop.

5. If P is a polygon, let kP be the polygon obtained from P by dilation with coefficient
k from the origin. Also, let A(P ) denote the area of polygon P and n(P ) denote the
number of integral points lying inside P or on the boundary of P .

(a) Prove 2A(P ) = n(2P )− 2n(P ) + 1.

∗ (b) Find an analogous formula for polyhedra in R3.

6. The Farey sequence Fn is the sequence of fractions (written in lowest terms) between
0 and 1 which have denominators not exceeding n. For example F5 is
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Show that if p1
q1
, p2q2 are two consecutive fractions then |p1q2 − q1p2| = 1.

Hint: To the Farey fraction h/k, assign the point (h, k) in the plane. Also observe
that the area of the triangle with vertices (0, 0), (p1, q1) and (p2, q2) is 1

2 |p1q2− q1p2|.

7. Given two fractions a
b ,

c
d , their mediant is the fraction a+c

b+d . Given three consecutive
Farey fractions p1

q1
, p2q2 ,

p3
q3

, show that p2
q2

is the mediant of p1
q1

and p3
q3

.

8. Another interpretation of Farey fractions due to Ford: given a Farey fraction h
k draw

a circle with center (hk ,
1

2k2 ). Show that two Ford circles are either tangent or do not
intersect while Ford circles of neighbouring Farey fractions must be tangent to each
other.

2



Convex Figures

9. Given two convex domains A,B ⊂ R2, we can form their Minkowski sum A+B which
consists of all points in the plane which can be represented as a+ b with a ∈ A and
b ∈ B. Show that the sum of two convex domains is again convex.

10. Suppose X ⊂ R2 has area greater than 1, show that it intersects one of its integral
translates.

11. Prove this result due to Minkowski: Suppose X ⊂ R2 is a convex figure containing
and symmetric with respect to the origin and area greater than 4. Show that it
contains other integral points.

∗ 12. An orchard is in a shape of a circle has radius 50m. The gardener stands in the
center, which also happens to be the origin. Trees grow at integral points and have
some thickness. Can the gardener see some boundary point of the orchard if

(a) the width of the trees are 1
50?

(b) what about 1√
2501

?

13. Given a polynomial F (x1, x2, . . . xn) =
∑

αCαx
α1
1 xα2

2 . . . xαn
n , we define its Newton

polygon DF to be the convex hull of the points (α1, α2, . . . , αn) for which coefficient
Cα 6= 0. Show that DFG = DF + DG (here we are using Minkowski sum).

14. (a) For a polynomial F (x1, x2, . . . xn) =
∑

αCαx
α1
1 xα2

2 . . . xαn
n with integer coeffi-

cients, we define its content c(F ) to be the greatest common divisor of the
coefficients. Show that c(F )c(G) = c(FG).

Hint: Assume c(F ) = c(G) = 1. You want to show that c(FG) = 1 as well. If
c(FG) 6= 1, then some prime divides all coefficients of FG. Look at the Newton
polygon of FG modulo that prime.

(b) Prove Gauss’ Lemma: Suppose a polynomial F (x1, x2, . . . xn) with integer coef-
ficients factors can be expressed as a product of two polynomials with rational
coefficients. Then it call be refactored into two polynomials with integer coeffi-
cients.
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Lattices

A lattice L may be described as a set of points “equally spaced in two directions” (below
are four examples). We have previously worked with the lattice I containing all integral
points, but results are general to arbitrary lattices. It is easily shown that all L -simple
parallelograms have the same area, which we denote [L : I ] and say that the lattice L

bloats the integral lattice [L : I ] times. In the examples, this number [L : I ] is 2, 2, 5
and 3 respectively. Of course, [I : I ] = 1.
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A way to visualize a lattice is by “assigning a basis”, that is calling a specific L -simple
parallelogram fundamental.

The number [L : I ] of course represents the number of integral points inside the
fundamental parallelogram (provided we do not count the integral points lying on the top
and right sides to avoid double-counting).

If L ⊃ M ⊃ N are three lattices then clearly [N : L ] = [N : M ][M : L ] (think
about what this means).

Formally, a lattice L is given by two linearly independent vectors (p1, q1), (p2, q2) – the
sides of the fundamental parallelogram – called the generators. In this case, L is precisely
the set of points k1(p1, q1) + k2(p2, q2) where k1, k2 span over the integers. For instance,
the lattice I can be spanned by vectors (0, 1), (1, 0) or by the pair (1, 1), (0, 1).
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Gauss’ Lemma

A very interesting result due to Gauss says that a prime number of type 4k + 1 can be
written as the sum of two squares (of course primes of type 4k + 3 cannot be written as a
sum of two squares).

15. A number y is a quadratic residue modulo n if there is an integer x for which x2 ≡ y
mod n. If you want, you can take these results for granted, they can be found in any
elementary text on number theory:

(a) The number −1 is a quadratic residue modulo a prime p if and only if it is of
type 4k + 1 (that is x2 = −1 can be solved modulo p).

∗ (b) The number −2 is a quadratic residue modulo a prime p if and only if it is of
type 8k + 1, 8k + 3.

∗ 16. Let M be the lattice generated by the vectors (0, p), (p, 0) and L be the set of points
y ≡ tx where t2 ≡ −1 mod p. Denote the point of L lying in the first quadrant (i.e
with x ≥ 0, y ≥ 0) closest to the origin by P (x, y).

(a) Show that the point Q(−y, x) also belongs to L .

(b) Show that L is a lattice. Conclude that [M : L ] = p.

(c) Show that the triangle POQ is an L -simple right-angled triangle.

(d) Prove Gauss Lemma by calculating the area of POQ in two different ways.

17. (a) A prime number p of type 8k + 1, 8k + 3 can be represented in a unique way as
a sum a2 + 2b2 (clearly if p is of the form, it must be either 8k + 1, 8k + 3).

(b) Classify the primes which can be represented by the quadratic form a2 + kb2.

18. It is easy to see that x2 ≡ 2 (mod 7) has two solutions. Show that they can be
extended to solve x2 ≡ 2 (mod 7k) for any k.

19. Let m be an odd positive integer. Show that there exists integers a, b such that
a2 + b2 ≡ −1 (mod m).

Hint: First prove when m = p is an odd prime by pigeon-hole, then extend to m = pk

prime powers by induction and m =
∏
i p
ki
i by the Chinese remainder theorem.
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20. Let L be a lattice in R4 generated by vectors a1 = (m, 0, 0, 0), a2 = (0,m, 0, 0),
a3 = (a, b, 1, 0), a4 = (b,−a, 0, 1) where m is a given integer and a, b are numbers
constructed in problem 19.

(a) The fundamental parallelepiped of L has volume m2.

(b) The length of every vector in L is divisible by m.

(c) The volume of a ball in R4 of radius r is π2r4

2 .

(d) Apply the 4-dimensional version of Minkowski’s theorem (problem 11) to the
ball centered at the origin and radius

√
2m − ε to show that m can be written

as the sum of 4 squares.

Waring’s Problem

Problem 20 shows that every number is the sum of 4 squares. In 1770, Waring asked
the following question: is every number the sum of some fixed number of cubes? forth-
powers? arbitrary n-th powers? The answer to these questions turns out to be yes. In
1908, Hurwitz suggested that Waring’s problem can be solved by means of polynomial
identities (see problem 21 for examples). A year later, Hilbert had completed the Hurwitz
programme by showing that they exist.

21. (a) Using the fact that every number is the sum of 4 squares and the Lagrange
identity (check it)

(x2
1 + x2

2 + x2
3 + x2

4)2 =
1
6

∑
1≤i<j≤4

{(xi + xj)4 + (xi − xj)4}

prove that every number is the sum of at most 53 = 48 + 5 fourth powers (hint:
express n = 6m+ r, 0 ≤ r ≤ 5).

(b) Prove analogous result for sixth powers using Fleck formula:

(x2
1 + x2

2 + x2
3 + x2

4)3 =
1
60

∑
i<j<k

(xi ± xj ± xk)6 +
1
30

∑
i<j

(xi ± xj)6 +
3
5

∑
i

x6
i .

(± means that we have a term with “+” and a similar term with “−”)
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(c) Prove analogous result for eighth powers using Hurwitz formula:

(x2
1 + x2

2 + x2
3 + x2

4)4 =
1

840
(x1 ± x2 ± x3 ± x4)8 +

1
5040

∑
i<j<k

(2xi ± xj ± xk)8

+
1
84

∑
i<j

(xi ± xj)8 +
1

840

∑
i

(2xi)6.

A more elementary solution given by Linnik using the notion of Schnirel’man density.

22. Given two sets A,B of natural numbers containing 0, we can take their sumset A+B

to be the set of numbers which can be represented as a + b with a ∈ A, b ∈ B.
For a set A, we can define its counting function A(n) which measures the number
of elements of A between 1 and n. We define the Schnirel’man density σA to be
infn>0

A(n)
n .

Notice that if a set has Schnirel’man density 1, it must contain all natural numbers.
Also, if a set does not contain 1, it has Schnirel’man density 0.

(a) Suppose that σA + σB ≥ 1. Show that A+B = N.

(b) Show that σA+B ≥ σA + σB − σAσB.

Remark: In fact it turns out that σA+B ≥ min(1, σA + σB), but this is much harder
to prove.
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